
Special Thanks to both Emily Teller and Chris Fallen.

Kylie McCormick Greg Newby

Mount Holyoke College ’08 ARSC Chief Scientist

Computer Science/

Theatre Arts

Information Retrieval (IR) research looks into finding desired
information in unstructured data. The most popular use of information
retrieval is in search engines.

Grid technologies enable the use of distributed computing
resources.

Grid Information Retrieval (GIR) uses the tools and standards
found in the grid community and applies them to distributed
information retrieval.

“Search Engines” are commonly monolithic – having one group
that indexes, searches, and ranks the data.

However, monolithic search engines cannot index certain
documents, like those that are password-protected.

In GIR, it is possible to have user credentials to allow access to
certain files, so that they can be searched.

GIR relies on each system to provide indexing and searching for
itself.

Because of this, there are two major issues that are currently
under research.

Any system that uses GIR will have to receive the result sets of
other system’s searches but will not necessarily be given any
information that can help re-rank or re-weigh the document
relevancy.

Problem: When presented with sets of ranked and scored
documents from multiple systems that each have different scoring
methods, how can you accurately create a result set that presents
the most relevant documents at the top?

Research is currently looking into Merge Algorithms to solve this.

Currently, ARSC is looking into three main merge algorithms:

Leap Of Faith – an algorithm that does not attempt to
normalize scores, but simply accepts them as they are and re-
ranks all documents based on their original scores

Rank Shuffle – an algorithm that assumes that a document’s
rank in its old system should be re-used in the final set of
documents (so all documents from rank #1 will receive top
ranking, and all documents from rank #2 will receive second
ranking, etc.)

Naïve Merge – an algorithm that normalizes the scores of the
documents in each set

Systems that use GIR may have thousands of different servers
that they can search.

Problem: The bandwidth and wait associated with a large GIR
system can make it unusable or undesirable compared to faster,
monolithic systems like Google.

In order to speed up searching in GIR, research is looking at
restriction, or server-selection, algorithms that would limit the number
of servers that the search will be run on.

Currently, ARSC is looking into server-selection algorithms based
on key terms obtained in Meta-Data.

Simply put, the “most popular” terms in the server are compared to
the query terms. Then the servers are each ranked according to their
relevance to the query terms.

Variations on this one particular algorithm include using ranked
values for the terms to represent how frequently they appear in the
server and simply using a boolean system of one and zero.

Any GIR system could use both a restriction and a merge
algorithm to improve its speed and result sets.

Problem: How can we mix and match these algorithms without
having unnecessary code and/or systems to test each algorithm
pairing?

ARSC has been working on Multisearch, a software that can be
used to test multiple merge algorithms as well as multiple restriction
algorithms in a mix-and-match fashion.

Goal: Produce a package that can be used for research in GIR
that is easy to use, allows mixing-and-matching for various
algorithms, and is adaptable.

Multisearch is flexible, allowing new additions and easy-to-edit
XML code to configure the client.

Multisearch is built off of other software, including OGSA-DAI WSI,
Apache Tomcat, and Apache Lucene.

OGSA-DAI Data Services allow resources, such as
relational or databases, to be exposed in a grid
environment.

A Data Service can have multiple resources.

The Data Service Resource provides data via a Data
Resource Accessor, which reviews user credentials and
gives access to the data stored on that data service.

More information can be found @
http://www.ogsadai.uk.org/

Multisearch comes with a Configuration object that extracts
information found in an XML file.

This XML defines

Which Algorithm is used to merge

Which Algorithm is used as a Server-Selection (if any)

What services and resources to search

OGSA-DAI’s Architecture aims to hide the various layers and
heterogeneity of data on a grid system.

Heterogeneity can provide difficulties with connections and
querying. Multisearch uses OGSA-DAI for this very reason.

Any new data resource – such as Egothor or Lemur or MySQL –
can be added to Multisearch as long as it complies with OGSA-DAI
standards and has a client toolkit (which generates XML for a query).

This makes Multisearch more flexible than it has been in the past,
and the user does not have to interact with the code to add new
resources to search.

Multisearch can also have new algorithms added to it, so long as
they comply with the standards in the user guide.

Allowing users to add their own algorithms is essential to aiding
new research in GIR.

By having a configurable front-end client, the user does not need
to have a data service in order to use Multisearch to run searches or
do research.

OGSA-DAI Standards are immensely beneficial to Multisearch,
which can suffer from issues like varying requirements of XML query
requests, which the client toolkit classes clear up.

By using XML, Multisearch can be configured to suit the
objectives of the user.

Each section of this XML can be modified as long as certain
standards are met.

Algorithm refers to the merge algorithm that is used to take the
results from the various backend servers and combine them in a
meaningful way.

As long as a new merge algorithm extends
edu.arsc.multisearch.merge.FinalSet and has a function called
merge(), it can be added to Multisearch and this XML without
modifying the code in Multisearch itself.

There are currently three different algorithms in Multisearch:
Naïve Merge, Rank Shuffle, and Leap of Faith.

<algorithm name=“ClassName”/>

Restriction is an optional field that refers to the server-selection
algorithms that we have been testing this year.

A new restriction algorithm must extend
edu.arsc.multisearch.restriction.Restriction and must some how
choose a top number of servers to be searched by Multisearch.

In the XML, a ratio (how many servers from the servers provided)
and a limit (how many servers maximum) must be given.

Server-selection algorithms are used to improve performance by
selecting servers that are “best” for the query, and thus eliminating
possible noisy data from other backends and saving bandwidth.

<restriction name=“ClassName” ratio=“.25” limit=“10”/>

The user can specify the minimum number of results a service
needs to return to be valid, along with a maximum number to
reduce bandwidth.

Each service is added as a “node” with the URI, name of the
server, and all of the resources in that service that are to be used.

There needs to be at least one resource listed for a service, or
else it will not have anything to search. If you are to update the
XML file, you need to know the resource ID.

<services min=“5” max=“20”> … </services>

The resource declaration is the longest—as you’ll need to put in
XML any additional things that the perform document might need.
For example, Lucene requires an index to be passed to it, so for
this particular service, we include an index.

Meta Data is used to obtain information for the server-selection
algorithm, and is based in OGSA-DAI’s structure.

<resource id="domain4" clienttoolkitclass=“ClassName"
secure="false" index="luc">

<metaDataName>
{http://ogsadai.org.uk/namespaces/2005/10/config}terms

</metaDataName>
</resource>

1. Multisearch takes the XML Configuration file and makes a
server object for each Data Service.

2. The user submits a query string, and Multisearch creates a
thread for each service/resource pair.

3. The search thread uses the client toolkit to produce an XML
Perform document which is sent to the data service.

4. The data service passes the perform document to the data
resource accessor, which returns XML Response Document.

5. The response document is returned to the search thread, and
the XML is converted into Document objects and passed back
to Multisearch.

6. Each Document set is merged into a final list of documents by
the algorithm provided in the XML document.

7. The results are presented to the user.

http://snowy.arsc.alaska.edu:8080/edu/arsc/multisearch/MultisearchServlet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

